Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
J Agric Food Chem ; 72(12): 6509-6518, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488047

RESUMO

Limosilactobacillus reuteri 121 4,6-α-glucanotransferase GtfB (Lr 121 GtfB), belonging to glycoside hydrolase family 70 (GH70), synthesizes linear isomalto/malto polysaccharides having (α1→6) linkages attached to the nonreducing ends of (α1→4) linked maltose oligosaccharide segments using starch or maltodextrin as a substrate. Since Lr 121 GtfB has low catalytic activity and efficiency, it leads to substrate regeneration and reduced substrate utilization. In this study, we superimposed the crystal structure of Lr 121 GtfB-ΔNΔV with that of L. reuteri NCC 2613 GtfB-ΔNΔV (Lr 2613 GtfB-ΔNΔV) to identify the acceptor binding subsites +1 to +3 and constructed five single-residue mutants and a random mutagenesis of N1019. Compared with the wild-type, N1019D Lr 121 GtfB-ΔN did not alter the product specificity, increased the catalytic activity and efficiency by 420 and 590%, respectively, and maintained >80% relative activity in the pH 3.5-6.5 interval. The findings will contribute to the industrial application of Lr 121 GtfB and provide new solutions for starch synthesis of higher value derivatives.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Limosilactobacillus reuteri , Sistema da Enzima Desramificadora do Glicogênio/química , Amido/metabolismo , Oligossacarídeos
2.
Food Res Int ; 181: 114063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448113

RESUMO

The use of infant formulas (IFs) based on hydrolyzed cow's milk proteins to prevent cow's milk allergy (CMA) is highly debated. The risk of sensitization to milk proteins induced by IFs may be affected by the degree of hydrolysis (DH) as well as other physicochemical properties of the cow's milk-based protein hydrolysates within the IFs. The immunogenicity (specific IgG1 induction) and sensitizing capacity (specific IgE induction) of 30 whey- or casein-based hydrolysates with different physicochemical characteristics were compared using an intraperitoneal model of CMA in Brown Norway rats. In general, the whey-based hydrolysates demonstrated higher immunogenicity than casein-based hydrolysates, inducing higher levels of hydrolysate-specific and intact-specific IgG1. The immunogenicity of the hydrolysates was influenced by DH, peptide size distribution profile, peptide aggregation, nano-sized particle formation, and surface hydrophobicity. Yet, only the surface hydrophobicity was found to affect the sensitizing capacity of hydrolysates, as high hydrophobicity was associated with higher levels of specific IgE. The whey- and casein-based hydrolysates exhibited distinct immunological properties with highly diverse molecular composition and physicochemical properties which are not accounted for by measuring DH, which was a poor predictor of sensitizing capacity. Thus, future studies should consider and account for physicochemical characteristics when assessing the sensitizing capacity of cow's milk-based protein hydrolysates.


Assuntos
Hipersensibilidade a Leite , Soro do Leite , Humanos , Animais , Bovinos , Feminino , Lactente , Ratos , Caseínas , Hipersensibilidade a Leite/prevenção & controle , Hidrólise , Hidrolisados de Proteína , Proteínas do Soro do Leite , Proteínas do Leite , Imunoglobulina G , Peptídeos , Imunoglobulina E
3.
J Agric Food Chem ; 72(10): 5391-5402, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427803

RESUMO

α-Glucanotransferases of the CAZy family GH70 convert starch-derived donors to industrially important α-glucans. Here, we describe characteristics of a novel GtfB-type 4,6-α-glucanotransferase of high enzyme activity (60.8 U mg-1) from Limosilactobacillus reuteri N1 (LrN1 GtfB), which produces surprisingly large quantities of soluble protein in heterologous expression (173 mg pure protein per L of culture) and synthesizes the reuteran-like α-glucan with (α1 → 6) linkages in linear chains and branch points. Protein structural analysis of LrN1 GtfB revealed the potential crucial residues at subsites -2∼+2, particularly H265, Y214, and R302, in the active center as well as previously unidentified surface binding sites. Furthermore, molecular dynamic simulations have provided unprecedented insights into linkage specificity hallmarks of the enzyme. Therefore, LrN1 GtfB represents a potent enzymatic tool for starch conversion, and this study promotes our knowledge on the structure-function relationship of GH70 GtfB α-glucanotransferases, which might facilitate the production of tailored α-glucans by enzyme engineering in future.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Limosilactobacillus reuteri , Simulação de Dinâmica Molecular , Glucanos/química , Amido/metabolismo , Relação Estrutura-Atividade
4.
Biotechnol Adv ; 72: 108326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38382582

RESUMO

Cyclodextrins (CDs) are important starch derivatives and commonly comprise α-, ß-, and γ-CDs. Their hydrophilic surface and hydrophobic inner cavity enable regulation of enzyme catalysis through direct or indirect interactions. Clarifying interactions between CDs and enzyme is of great value for enzyme screening, mechanism exploration, regulation of catalysis, and applications. We summarize the interactions between CDs and glycoside hydrolases (GHs) according to two aspects: 1) CD as products, substrates, inhibitors and activators of enzymes, directly affecting the reaction process; 2) CDs indirectly affecting the enzymatic reaction by solubilizing substrates, relieving substrate/product inhibition, increasing recombinant enzyme production and storage stability, isolating and purifying enzymes, and serving as ligands in crystal structure to identify functional amino acid residues. Additionally, CD enzyme mimetics are developed and used as catalysts in traditional artificial enzymes as well as nanozymes, making the application of CDs no longer limited to GHs. This review concerns the regulation of GHs catalysis by CDs, and gives insights into research on interactions between enzymes and ligands.


Assuntos
Ciclodextrinas , Ciclodextrinas/química , Ciclodextrinas/metabolismo , Glicosídeo Hidrolases/metabolismo , Amido/química , Catálise
5.
Appl Environ Microbiol ; 90(1): e0151023, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38095456

RESUMO

Plasmid conjugation is a key facilitator of horizontal gene transfer (HGT), and plasmids encoding antibiotic resistance drive the increasing prevalence of antibiotic resistance. In natural, engineered, and clinical environments, bacteria often grow in protective biofilms. Therefore, a better understanding of plasmid transfer in biofilms is needed. Our aim was to investigate plasmid transfer in a biofilm-adapted wrinkly colony mutant of Xanthomonas retroflexus (XRw) with enhanced matrix production and reduced motility. We found that XRw biofilms had an increased uptake of the broad host-range IncP-1ϵ plasmid pKJK5 compared to the wild type (WT). Proteomics revealed fewer flagellar-associated proteins in XRw, suggesting that flagella were responsible for reducing plasmid uptake. This was confirmed by the higher plasmid uptake of non-flagellated fliM mutants of the X. retroflexus wrinkly mutant as well as the wild type. Moreover, testing several flagellar mutants of Pseudomonas putida suggested that the flagellar effect was more general. We identified seven mechanisms with the potential to explain the flagellar effect and simulated them in an individual-based model. Two mechanisms could thus be eliminated (increased distances between cells and increased lag times due to flagella). Another mechanism identified as viable in the modeling was eliminated by further experiments. The possibility of steric hindrance of pilus movement and binding by flagella, reducing the frequency of contact and thus plasmid uptake, proved viable, and the three other viable mechanisms had a reduced probability of plasmid transfer in common. Our findings highlight the important yet complex effects of flagella during bacterial conjugation in biofilms.IMPORTANCEBiofilms are the dominant form of microbial life and bacteria living in biofilms are markedly different from their planktonic counterparts, yet the impact of the biofilm lifestyle on horizontal gene transfer (HGT) is still poorly understood. Horizontal gene transfer by conjugative plasmids is a major driver in bacterial evolution and adaptation, as exemplified by the troubling spread of antibiotic resistance. To either limit or promote plasmid prevalence and dissemination, we need a better understanding of plasmid transfer between bacterial cells, especially in biofilms. Here, we identified a new factor impacting the transfer of plasmids, flagella, which are required for many types of bacterial motility. We show that their absence or altered activity can lead to enhanced plasmid uptake in two bacterial species, Xanthomonas retroflexus and Pseudomonas putida. Moreover, we demonstrate the utility of mathematical modeling to eliminate hypothetical mechanisms.


Assuntos
Pseudomonas putida , Xanthomonas , Plasmídeos , Xanthomonas/genética , Biofilmes , Resistência Microbiana a Medicamentos , Transferência Genética Horizontal , Conjugação Genética , Pseudomonas putida/genética , Antibacterianos/farmacologia
6.
N Biotechnol ; 79: 39-49, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38097138

RESUMO

4-α-glucanotransferases (4αGTs, EC 2.4.1.25) from glycoside hydrolase family 77 (GH77) catalyze chain elongation of starch amylopectin chains and can be utilized to structurally modify starch to tailor its gelation properties. The potential relationship between the structural design of 4αGTs and functional starch modification is unknown. Here, family GH77 was mined in silico for enzyme candidates based on sub-grouping guided by Conserved Unique Peptide Patterns (CUPP) bioinformatics categorization. From + 12,000 protein sequences a representative set of 27 4αGTs, representing four different domain architectures, different bacterial origins and diverse CUPP groups, was selected for heterologous expression and further study. Most of the enzymes catalyzed starch modification, but their efficacies varied substantially. Five of the 4αGTs were characterized in detail, and their action was compared to that of the industrial benchmark enzyme, Tt4αGT (CUPP 77_1.2), from Thermus thermophilus. Reaction optima of the five 4αGTs ranged from ∼40-60 °C and pH 7.3-9.0. Several were stable for a minimum 4 h at 70 °C. Domain architecture type A proteins, consisting only of a catalytic domain, had high thermal stability and high starch modification ability. All five novel 4αGTs (and Tt4αGT) induced enhanced gelling of potato starch. One, At4αGT from Azospirillum thermophilum (CUPP 77_2.4), displayed distinct starch modifying abilities, whereas T24αGT from Thermus sp. 2.9 (CUPP 77_1.2) modified the starch similarly to Tt4αGT, but slightly more effectively. T24αGT and At4αGT are thus interesting candidates for industrial starch modification. A model is proposed to explain the link between the 4αGT induced molecular modifications and macroscopic starch gelation.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Solanum tuberosum , Solanum tuberosum/metabolismo , Glicosídeo Hidrolases , Amido , Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Peptídeos
7.
J Agric Food Chem ; 71(48): 18898-18908, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38053504

RESUMO

Pullulanases are multidomain α-glucan debranching enzymes with one or more N-terminal domains (NTDs) including carbohydrate-binding modules (CBMs) and domains of unknown function (DUFs). To elucidate the roles of NTDs in Lactobacillus acidophilus NCFM pullulanase (LaPul), two truncated variants, Δ41-LaPul (lacking CBM41) and Δ(41+DUFs)-LaPul (lacking CBM41 and two DUFs), were produced recombinantly. LaPul recognized 1.3- and 2.2-fold more enzyme attack-sites on starch granules compared to Δ41-LaPul and Δ(41+DUFs)-LaPul, respectively, as measured by interfacial kinetics. Δ41-LaPul displayed markedly lower affinity for starch granules and ß-cyclodextrin (10- and >21-fold, respectively) in comparison to LaPul, showing substrate binding mainly stems from CBM41. Δ(41+DUFs)-LaPul exhibited a 12 °C lower melting temperature than LaPul and Δ41-LaPul, indicating that the DUFs are critical for LaPul stability. Notably, Δ41-LaPul exhibited a 14-fold higher turnover number (kcat) and 9-fold higher Michaelis constant (KM) compared to LaPul, while Δ(41+DUFs)-LaPul's values were close to those of LaPul, possibly due to the exposure of aromatic by truncation.


Assuntos
Glicosídeo Hidrolases , Lactobacillus acidophilus , Humanos , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/metabolismo , Glicosídeo Hidrolases/química , Glucanos/metabolismo , Amido/metabolismo
8.
Appl Environ Microbiol ; 89(10): e0118523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37791757

RESUMO

Humans consume alginate in the form of seaweed, food hydrocolloids, and encapsulations, making the digestion of this mannuronic acid (M) and guluronic acid (G) polymer of key interest for human health. To increase knowledge on alginate degradation in the gut, a gene catalog from human feces was mined for potential alginate lyases (ALs). The predicted ALs were present in nine species of the Bacteroidetes phylum, of which two required supplementation of an endo-acting AL, expected to mimic cross-feeding in the gut. However, only a new isolate grew on alginate. Whole-genome sequencing of this alginate-utilizing isolate suggested that it is a new Bacteroides ovatus strain harboring a polysaccharide utilization locus (PUL) containing three ALs of families: PL6, PL17, and PL38. The BoPL6 degraded polyG to oligosaccharides of DP 1-3, and BoPL17 released 4,5-unsaturated monouronate from polyM. BoPL38 degraded both alginates, polyM, polyG, and polyMG, in endo-mode; hence, it was assumed to deliver oligosaccharide substrates for BoPL6 and BoPL17, corresponding well with synergistic action on alginate. BoPL17 and BoPL38 crystal structures, determined at 1.61 and 2.11 Å, respectively, showed (α/α)6-barrel + anti-parallel ß-sheet and (α/α)7-barrel folds, distinctive for these PL families. BoPL17 had a more open active site than the two homologous structures. BoPL38 was very similar to the structure of an uncharacterized PL38, albeit with a different triad of residues possibly interacting with substrate in the presumed active site tunnel. Altogether, the study provides unique functional and structural insights into alginate-degrading lyases of a PUL in a human gut bacterium.IMPORTANCEHuman ingestion of sustainable biopolymers calls for insight into their utilization in our gut. Seaweed is one such resource with alginate, a major cell wall component, used as a food hydrocolloid and for encapsulation of pharmaceuticals and probiotics. Knowledge is sparse on the molecular basis for alginate utilization in the gut. We identified a new Bacteroides ovatus strain from human feces that grew on alginate and encoded three alginate lyases in a gene cluster. BoPL6 and BoPL17 show complementary specificity toward guluronate (G) and mannuronate (M) residues, releasing unsaturated oligosaccharides and monouronic acids. BoPL38 produces oligosaccharides degraded by BoPL6 and BoPL17 from both alginates, G-, M-, and MG-substrates. Enzymatic and structural characterization discloses the mode of action and synergistic degradation of alginate by these alginate lyases. Other bacteria were cross-feeding on alginate oligosaccharides produced by an endo-acting alginate lyase. Hence, there is an interdependent community in our guts that can utilize alginate.


Assuntos
Alginatos , Bactérias , Humanos , Alginatos/metabolismo , Bactérias/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/metabolismo , Especificidade por Substrato
9.
Biochemistry ; 62(16): 2358-2362, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37498728

RESUMO

Engineering glycoside hydrolases is a major route to obtaining catalysts forming glycosidic bonds. Glycosynthases, thioglycoligases, and transglycosylases represent the main strategies, each having advantages and drawbacks. Here, we show that an engineered enzyme from the GH84 family, the acid-base mutant TtOGA-D120N, is an efficient O-, N-, and S-glycoligase, able to use Ssp3, Osp3, Nsp2, and Nsp nucleophiles. Moreover, TtOGA-D120N catalyzes the formation and release of N-acetyl-d-glucosamine 1,2-oxazoline, the intermediate of hexosaminidases displaying substrate-assisted catalysis. This release of an activated intermediate allows cascade synthesis by combination with transglycosylases or glycosynthases, here exemplified by synthesis of the human milk oligosaccharide lacto-N-triose II.


Assuntos
Hexosaminidases , beta-N-Acetil-Hexosaminidases , Humanos , Glicosilação , beta-N-Acetil-Hexosaminidases/química , beta-N-Acetil-Hexosaminidases/metabolismo , Glicosiltransferases , Glicosídeo Hidrolases/metabolismo
10.
Clin Biochem ; 118: 110599, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37343745

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is characterized by excessive extracellular matrix (ECM) remodeling, herein ECM degradation. Fibronectin (FN) is an important component of the ECM that is produced by multiple cell types, including fibroblasts. Extra domain B (EDB) is specific for a cellular FN isoform which is found in the ECM. We sought to develop a non-invasive test to investigate whether matrix metalloproteinase 8 (MMP-8) degradation of EDB in cellular FN results in a specific protein fragment that can be assessed serologically and if levels relate to pulmonary fibrosis. METHOD: Cellular FN was cleaved in vitro by MMP-8 and a protein fragment was identified by mass spectrometry. A monoclonal antibody (mAb) was generated, targeting a neo-epitope originating from EDB in cellular FN. Utilizing this mAb, a neo-epitope specific enzyme-linked immunosorbent assay (FN-EDB) was developed and technically validated. Serum FN-EDB was assessed in an IPF cohort (n = 98), registered at clinicaltrials.gov (NCT02818712), and in healthy controls (n = 35). RESULTS: The FN-EDB assay had high specificity for the MMP-8 degraded neo-epitope and was technically robust. FN-EDB serum levels were not influenced by age, sex, ethnicity, or BMI. Moreover, FN-EDB serum levels were significantly higher in IPF patients (median 31.38 [IQR 25.79-46.84] ng/mL) as compared to healthy controls (median 28.05 [IQR 21.58-33.88] ng/mL, p = 0.023). CONCLUSION: We developed the neo-epitope specific FN-EDB assay, a competitive ELISA, as a tool for serological assessment of MMP-8 mediated degradation of EDB in cellular FN. This study indicates that degradation of EDB in cellular FN is elevated in IPF and warrants further investigation.


Assuntos
Fibrose Pulmonar , Humanos , Metaloproteinase 8 da Matriz , Fibronectinas/química , Fibronectinas/metabolismo , Epitopos , Anticorpos Monoclonais , Biomarcadores
11.
J Agric Food Chem ; 71(23): 9040-9050, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37264600

RESUMO

Degradation of starch granules by a psychrophilic α-amylase, AHA, from the Antarctic bacterium Pseudoalteromonas haloplanktis TAB23 was facilitated by C-terminal fusion to a starch-binding domain (SBD) from either Aspergillus niger glucoamylase (SBDGA) or Arabidopsis thaliana glucan, water dikinase 3 (SBDGWD3) via a decapeptide linker. Depending on the waxy, normal or high-amylose starch type and the botanical source, the AHA-SBD fusion enzymes showed up to 3 times higher activity than AHA wild-type. The SBD-fusion thus increased the density of enzyme attack-sites and binding-sites on the starch granules by up to 5- and 7-fold, respectively, as measured using an interfacial catalysis approach that combined conventional Michaelis-Menten kinetics, with the substrate in excess, and inverse kinetics, having enzyme in excess, with enzyme-starch granule adsorption isotherms. Higher substrate affinity of the SBDGA compared to SBDGWD3 was accompanied by the superior activity of AHA-SBDGA in agreement with the Sabatier principle of adsorption limited heterogenous catalysis.


Assuntos
Amido , alfa-Amilases , alfa-Amilases/química , Hidrólise , Estrutura Terciária de Proteína , Amido/química , Amilose/química
12.
Molecules ; 28(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175208

RESUMO

Enzymatic hydrolysis of starch granules forms the fundamental basis of how nature degrades starch in plant cells, how starch is utilized as an energy resource in foods, and develops efficient, low-cost saccharification of starch, such as bioethanol and sweeteners. However, most investigations on starch hydrolysis have focused on its rates of degradation, either in its gelatinized or soluble state. These systems are inherently more well-defined, and kinetic parameters can be readily derived for different hydrolytic enzymes and starch molecular structures. Conversely, hydrolysis is notably slower for solid substrates, such as starch granules, and the kinetics are more complex. The main problems include that the surface of the substrate is multifaceted, its chemical and physical properties are ill-defined, and it also continuously changes as the hydrolysis proceeds. Hence, methods need to be developed for analyzing such heterogeneous catalytic systems. Most data on starch granule degradation are obtained on a long-term enzyme-action basis from which initial rates cannot be derived. In this review, we discuss these various aspects and future possibilities for developing experimental procedures to describe and understand interfacial enzyme hydrolysis of native starch granules more accurately.


Assuntos
Amido , alfa-Amilases , alfa-Amilases/metabolismo , Hidrólise , Amido/química , Metabolismo dos Carboidratos , Catálise
13.
Molecules ; 28(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241852

RESUMO

A few α-glucan debranching enzymes (DBEs) of the large glycoside hydrolase family 13 (GH13), also known as the α-amylase family, have been shown to catalyze transglycosylation as well as hydrolysis. However, little is known about their acceptor and donor preferences. Here, a DBE from barley, limit dextrinase (HvLD), is used as a case study. Its transglycosylation activity is studied using two approaches; (i) natural substrates as donors and different p-nitrophenyl (pNP) sugars as well as different small glycosides as acceptors, and (ii) α-maltosyl and α-maltotriosyl fluorides as donors with linear maltooligosaccharides, cyclodextrins, and GH inhibitors as acceptors. HvLD showed a clear preference for pNP maltoside both as acceptor/donor and acceptor with the natural substrate pullulan or a pullulan fragment as donor. Maltose was the best acceptor with α-maltosyl fluoride as donor. The findings highlight the importance of the subsite +2 of HvLD for activity and selectivity when maltooligosaccharides function as acceptors. However, remarkably, HvLD is not very selective when it comes to aglycone moiety; different aromatic ring-containing molecules besides pNP could function as acceptors. The transglycosylation activity of HvLD can provide glycoconjugate compounds with novel glycosylation patterns from natural donors such as pullulan, although the reaction would benefit from optimization.


Assuntos
Ciclodextrinas , Hordeum , Hordeum/metabolismo , Glicosídeo Hidrolases/metabolismo , Hidrólise , Especificidade por Substrato
14.
Methods Mol Biol ; 2657: 91-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37149524

RESUMO

Affinity electrophoresis has long been used to study the interaction between proteins and large soluble ligands. The technique has been found to have great utility for the examination of polysaccharide binding by proteins, particularly carbohydrate-binding modules (CBMs). In recent years carbohydrate surface binding sites of proteins, mostly enzymes, have also been investigated by this method. Here we describe a protocol for identifying binding interactions between enzyme catalytic modules and a variety of carbohydrate ligands.


Assuntos
Carboidratos , Polissacarídeos , Polissacarídeos/química , Ligantes , Carboidratos/química , Sítios de Ligação , Eletroforese , Ligação Proteica
15.
Essays Biochem ; 67(3): 387-398, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37013401

RESUMO

Alginates are abundant marine anionic polysaccharides consumed by humans. Thus, over the years some understanding has emerged about alginate utilization by human gut microbiota (HGM). However, insights have been obtained only recently at the molecular level with regard to structure and function of alginate degrading and metabolizing enzymes from HGM. Still, numerous studies report on effects of alginates on bacterial communities from digestive tracts of various, predominantly marine organisms feeding on alginate and some of the involved alginate lyases have been characterized. Other studies describe the beneficial impact on gut microbiota elicited by alginates in animal models, for example, high-fat-diet-fed mice addressing obesity or as feed supplements for livestock. Alginates are depolymerized by a ß-elimination reaction catalyzed by polysaccharide lyases (PLs) referred to as alginate lyases (ALs). The ALs are found in 15 of the 42 PL families categorized in the CAZy database. While genome mining has led to prediction of ALs encoded by bacteria of the HGM; currently, only four enzymes from this niche have been characterized biochemically and two crystal structures are reported. Alginates are composed of mannuronate (M) and guluronate (G) residues organized in M-, G-, and MG-blocks, which calls for ALs of complementary specificity to effectively depolymerize alginate to alginate oligosaccharides (AOSs) and monosaccharides. Typically, ALs of different PL families are encoded by genes arranged in clusters denoted as polysaccharide utilization loci. Currently, biochemical and structural analyses of marine bacterial ALs contribute to depicting the mode of action of predicted enzymes from bacteria of the HGM.


Assuntos
Alginatos , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Alginatos/química , Especificidade por Substrato , Bactérias/genética
16.
Molecules ; 28(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37049710

RESUMO

Efficient inactivation of microbial α-amylases (EC 3.2.1.1) can be a challenge in starch systems as the presence of starch has been shown to enhance the stability of the enzymes. In this study, commonly used inactivation methods, including multistep washing and pH adjustment, were assessed for their efficiency in inactivating different α-amylases in presence of raw potato starch. Furthermore, an effective approach for irreversible α-amylase inactivation using sodium hypochlorite (NaOCl) is demonstrated. Regarding inactivation by extreme pH, the activity of five different α-amylases was either eliminated or significantly reduced at pH 1.5 and 12. However, treatment at extreme pH for 5 min, followed by incubation at pH 6.5, resulted in hydrolysis yields of 42-816% relative to controls that had not been subjected to extreme pH. "Inactivation" by multistep washing with water, ethanol, and acetone followed by gelatinization as preparation for analysis gave significant starch hydrolysis compared to samples inactivated with NaOCl before the wash. This indicates that the further starch degradation observed in samples subjected to washing only took place during the subsequent gelatinization. The current study demonstrates the importance of inactivation methodology in α-amylase-mediated raw starch depolymerization and provides a method for efficient α-amylase inactivation in starch systems.


Assuntos
Solanum tuberosum , alfa-Amilases , alfa-Amilases/metabolismo , Solanum tuberosum/metabolismo , Hidrólise , Etanol , Amido/metabolismo
17.
Crit Rev Food Sci Nutr ; : 1-14, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37051937

RESUMO

Modification of starch by transglycosylases from glycoside hydrolase families has attracted much attention recently; these enzymes can produce starch derivatives with novel properties, i.e. processability and functionality, employing highly efficient and safe methods. Starch-active transglycosylases cleave starches and transfer linear fragments to acceptors introducing α-1,4 and/or linear/branched α-1,6 glucosidic linkages, resulting in starch derivatives with excellent properties such as complexing and resistance to digestion characteristics, and also may be endowed with new properties such as thermo-reversible gel formation. This review summarizes the effects of variations in glycosidic linkage composition on structure and properties of modified starches. Starch-active transglycosylases are classified into 4 groups that form compounds: (1) in cyclic with α-1,4 glucosidic linkages, (2) with linear chains of α-1,4 glucosidic linkages, (3) with branched α-1,6 glucosidic linkages, and (4) with linear chains of α-1,6 glucosidic linkages. We discuss potential processability and functionality of starch derivatives with different linkage combinations and structures. The changes in properties caused by rearrangements of glycosidic linkages provide guidance for design of starch derivatives with desired structures and properties, which promotes the development of new starch products and starch processing for the food industry.

18.
Molecules ; 28(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37110757

RESUMO

Rice flour (RF) has become a promising food material. In the present study, RF with higher protein content was prepared using a granular starch hydrolyzing enzyme (GSHE). Particle size, morphology, crystallinity, and molecular structures of RF and rice starch (RS) were characterized to establish a hydrolytic mechanism; thermal, pasting, and rheological properties were determined to evaluate processability using differential scanning calorimetry (DSC), rapid viscosity analysis (RVA), and rheometer, respectively. The GSHE treatment resulted in pinholes, pits, and surface erosion through sequential hydrolysis of crystalline and amorphous areas on the starch granule surface. The amylose content decreased with hydrolysis time, while the very short chains (DP < 6) increased rapidly at 3 h but decreased slightly later. After hydrolysis for 24 h, the protein content in RF increased from 8.52% to 13.17%. However, the processability of RF was properly maintained. Specifically, the data from DSC showed that the conclusion temperature and endothermic enthalpy of RS barely changed. The result of rapid RVA and rheological measurement indicated that RF paste viscosity and viscoelastic properties dropped rapidly after 1 h hydrolysis and thereafter recovered slightly. This study provided a new RF raw material useful for improving and developing RF-based foods.


Assuntos
Oryza , Amido , Amido/química , Farinha/análise , Amilose/química , Viscosidade , Temperatura , Oryza/química
19.
Carbohydr Polym ; 310: 120716, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36925243

RESUMO

Isomalto/malto-polysaccharides (IMMPs) derived from malto-oligosaccharides such as maltoheptaose (G7) are elongated non-branched gluco-oligosaccharides produced by 4,6-α-glucanotransferase (GtfB). However, G7 is expensive and cumbersome to produce commercially. In this study, a cost-effective enzymatic process for IMMPs synthesis is developed that utilizes the combined action of cyclodextrinase from Palaeococcus pacificus (PpCD) and GtfB-ΔN from Limosilactobacillus reuteri 121 to convert ß-cyclodextrin into IMMPs with a maximum yield (16.19 %, w/w). The purified IMMPs synthesized by simultaneous or sequential treatments, designated as IMMP-Sim and IMMP-Seq, possess relatively high contents of α-(1 â†’ 6) glucosidic linkages. By controlling the release of G7 and smaller malto-oligosaccharides by PpCD, IMMP-Seq was obtained of DP varying from 12.9 to 29.5. Enzymatic fingerprinting revealed different linkage-type distribution of α-(1 â†’ 6) linked segments with α-(1 â†’ 4) segments embedded at the reducing end and middle part. The proportion of α-(1 â†’ 6) segments containing the non-reducing end was 56.76 % for IMMP-Sim but 28.98 % for IMMP-Seq. Addition of G3 or G4 as specific acceptors resulted in IMMPs exhibiting low polydispersity. This procedure can be applied as a novel bioprocess that does not require costy high-purity malto-oligosaccharides and with control of the average DP of IMMPs by adjusting the substrate composition.


Assuntos
Polissacarídeos , beta-Ciclodextrinas , Análise Custo-Benefício , Polissacarídeos/química , Oligossacarídeos/química
20.
Carbohydr Polym ; 305: 120520, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737184

RESUMO

How to improve the solubility of linear dextrins (LD) and retain their characteristic helix amphiphilic cavities with flexible embedding capability, is a question worth exploring without adding new chemical groups. The strategy presented in this study is to attach a highly flexible (α-1 â†’ 6) glucochain at the reducing end of LD by preparing a new type of dextrin, referred to as single-arm linear dextrin (SLD). In the actual synthesis, an (α-1 â†’ 6) linked oligosaccharide of DP¯ 10.7 (PDI = 1.28) was formed by extension of glucose units onto sucrose (2 M) by using L940W mutant of the glucansucrase GTF180-ΔN firstly. Next using γ-CD as glucosylation donor γ-CGTase extended this (α-1 â†’ 6) glucochain with (α-1 â†’ 4) bonds. SLD is a chimeric glucosaccharide comprising an (α-1 â†’ 4) linked part (DP¯ 10.5) attached to the nonreducing end of an (α-1 â†’ 6) glucochain as verified by enzyme fingerprinting and 1H NMR. Furthermore, SLD was validated to show greatly improved solubility and dispersibility of resveratrol in water, as indicated by a 3.12-fold enhancement over the solubility in the presence of 0.014 M SLD. This study provided a new strategy for solving the solubility problem of LD and opens possibilities for new design of the fine structure of starch-like materials.


Assuntos
Dextrinas , Limosilactobacillus reuteri , Glucose , Amido , Oligossacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...